Phase estimation for signal reconstruction in single-channel speech separation

نویسندگان

  • Pejman Mowlaee
  • Rahim Saeidi
  • Rainer Martin
چکیده

Single-channel speech separation algorithms frequently ignore the issue of accurate phase estimation while reconstructing the enhanced signal. Instead, they directly employ the mixed-signal phase for signal reconstruction which leads to undesired traces of the interfering source in the target signal. In this paper, assuming a given knowledge of signal spectrum amplitude, we present a solution to estimate the phase information for signal reconstruction of the sources from a single-channel mixture observation. We first investigate the effectiveness of the proposed phase estimation method employing known magnitude spectra of sources as an ideal case. We further relax the ideal signal spectra assumption by perturbing the clean signal spectra via Gaussian noise. The results show that for both scenarios, ideal and noisy magnitude signal spectra, the proposed phase estimation approach offers improved signal reconstruction accuracy, segmental SNR and PESQ compared to benchmark methods, and those neglecting the phase information.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phase estimation for signal reconstruction in single-channel source separation

Single-channel speech separation algorithms frequently ignore the issue of accurate phase estimation while reconstructing the enhanced signal. Instead, they directly employ the mixed-signal phase for signal reconstruction which leads to undesired traces of the interfering source in the target signal. In this paper, assuming a given knowledge of signal spectrum amplitude, we present a solution t...

متن کامل

Impact of phase estimation on single-channel speech separation based on time-frequency masking.

Time-frequency masking is a common solution for the single-channel source separation (SCSS) problem where the goal is to find a time-frequency mask that separates the underlying sources from an observed mixture. An estimated mask is then applied to the mixed signal to extract the desired signal. During signal reconstruction, the time-frequency-masked spectral amplitude is combined with the mixt...

متن کامل

Noise Estimation in Single Channel Speech Enhancement Using FFT

Conventional speech enhancement methods typically utilize the noisy phase spectrum for signal reconstruction. This letter presents a novel method to estimate the clean speech phase spectrum, given the noisy speech observation in single-channel speech enhancement. The proposed method relies on the phase decomposition of the instantaneous noisy phase spectrum followed by temporal smoothing in ord...

متن کامل

On Phase Importance in Parameter Estimation for Single-Channel Source Separation

A single-channel source separation (SCSS) algorithm is targeted to estimate the underlying unknown signals from their single-channel recorded mixture. Current SCSS methods often neglect the phase information in their parameter estimation and use the noisy phase in the signal reconstruction stage. In this paper, we investigate the impact of phase information in the parameter estimation stage of ...

متن کامل

Iterative sinusoidal-based partial phase reconstruction in single-channel source separation

Partial phase reconstruction based on a confidence domain has recently been shown to provide improved signal reconstruction performance in a single-channel source separation scenario. In this paper, we replace the previous binarized fixed-threshold confidence domain with a new signal-dependent one estimated by employing a sinusoidal model to be applied on the estimated magnitude spectrum of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013